Log in

Oxygen isotopes in mantle related and geothermally altered magmatites of the Transhimalayan (Gangdese) ranges

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In closed magma systems SiO2 approximately measures differentiation progress and oxygen isotopes can seem to obey Rayleigh fractionation only as a consequence of the behaviour of SiO2. The main role of δ 18O is as a sensitive indicator of contamination, either at the start of differentiation (δ 18Oinit) or as a proportion of fractionation in AFC. Plots of δ 18O vs SiO2-allow to determine initial δ 18O values for different sequences for source comparison. For NBS-28=9.60, the δ 18O at 48% SiO2-varies between a high 6.4‰ for Kiglapait (Kalamarides 1984), 5.9‰ for Transhimalaya, 5.8‰ for Hachijo-Jima (Matsuhisa 1979), 5.6‰ for Koloula (Chivas et al. 1982) and a low 5.3‰ for the Darran Complex, New Zealand. The Transhimalayan batholiths (Gangdese belt) were emplaced in the ‘Ladakh-Lhasa terrane’, between the present-day Banggong-Nujiang, and Indus-Yarlung Tsangbo suture zones, after its accretion to Eurasia. The gradient of the least contaminated continuous (δ 18O vs SiO2-igneous trend line is similar to that of Koloula, and AFC calculations suggest a low secondary assimilation rate of less than 0.05 times the rate of crystallisation. Outliers enriched in 18O are frequent in the Lhasa, and apparently rare in the Ladakh transsect. Low-δ 18O (5.0‰−0‰) granitoids and andesites on the Lhasa-Yangbajain axis are the result of present day or recent near-surface geothermal activity; their quartzes still trace the granitoids to the Transhimalaya δ 18O trend line, but the distribution of low total rock or feldspar δ 18O values could be a guide to more recent heat flow and thermally marked tectonic lineaments. Two ignimbrites from Maqiang show hardly any 18O-contamination by crustal material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Academia Sinica (1980a) Geological Map of **zang (Tibet). Institute of Geology, Bei**g

    Google Scholar 

  • Academia Sinica (1980b) Scientific Guidebook to South **zang (Tibet). Symposium on Qinghai-**zang Plateau. Bei**g, pp 104

  • Blattner P (1981) ‘Halogen geothermometry’ and case for post-Devonian granolite in Fiordland, New Zealand. Bull Mineral 104:811–816

    Google Scholar 

  • Blattner P (1985) Isotope shift data and the natural evolution of geothermal systems. (WRI-4 Symposium) Chem Geol 49:187–203

    Google Scholar 

  • Blattner P, Reid F (1982) The origin of lavas and ignimbrites of the Taupo Volcanic Zone, New Zealand, in the light of oxygen isotope data. Geochim Cosmochim Acta 46:1417–1429

    Google Scholar 

  • Blattner P, Dietrich V, Gansser A (1983) Contrasting 18O-enrichment and origins of High Himalayan and Transhimalayan intrusives. Earth Planet Sci Lett 65:276–286

    Google Scholar 

  • Blattner P, Houston C (1986) Constant ‘oceanic’ oxygen isotope ratio of Taupo Volcanic Zone acidic magmas. Internat Volcanolog Congress New Zealand, Abstracts Vol, IAVCEI, p 4

  • Blattner P, Williams JG (1987) The Largs high latitude oxygen isotope anomaly and low initial δ 18O of the Darran Complex (New Zealand). Geol Soc NZ Ann Conf Dunedin Abstracts, p 16

  • Brandt SB (1974) Thermodynamics of isotope exchange in equilibrated mineral associations. Dokl Acad Nauk SSR (AGI transl) 2144:179–181

    Google Scholar 

  • Chang Cheng-fa, Cheng Hsi-lan (1973) Some tectonic features of the Mt Chomolungma area, southern Tibet, China. Scientia Sinica 16:257–265

    Google Scholar 

  • Chang Cheng-fa and 26 others (1986) Preliminary conclusions of the Royal Society and Academia Simica 1985 geotraverse of Tibet. Nature 323:501–507

    Google Scholar 

  • Chivas AR, Andrew AS, Sinha AK, O'Neil JR (1982) Geochemistry of a Pliocene-Pleistocene oceanic-arc plutonic complex, Guadalcanal. Nature 300:139–143

    Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Google Scholar 

  • Coulon C, Maluski H, Bollinger C, Wang S (1986) Mesozoic and Cenozoic volcanic rocks Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamic significance. Earth Planet Sci Lett 79:281–302

    Google Scholar 

  • Debon F, Le Fort P, Sheppard SMF, Sonet J (1986) The four plutonic belts of the Transhimalaya-Himalaya: a chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. J Petrol 27:219–250

    Google Scholar 

  • DePaolo D (1981) Trace element and isotopic effects on combined wallrock assimilation and fractional crystallisation. Earth Planet Sci Lett 53:189–202

    Google Scholar 

  • DePaolo D (1985) Isotopic studies of processes in mafic magma chambers: I. The Kiglapait Intrusion, Labrador. J Petrol 26:925–951

    Google Scholar 

  • Didier J (1973) Granites and their enclaves. Elsevier, Amsterdam New York, pp 393

    Google Scholar 

  • France-Lanord C, LeFort P (1988) Crustal melting and granite genesis during the Himalayan collision orogenesis. Trans R Soc Edinburgh Earth Sci 79:183–195

    Google Scholar 

  • Frank W, Gansser A, Trommsdorff V (1977) Geological observations in the Ladakh area. Schweiz Mineral Petrogr Mitt 57:89–113

    Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Wiley, London, pp 289

    Google Scholar 

  • Gansser A (1980a) The significance of the Himalayan suture zone. Tectonophysics 62:37–52

    Google Scholar 

  • Gansser A (1980b) The division between Himalaya and Karakorum. Geol Bull Univ Peshawar 13:9–22

    Google Scholar 

  • Gansser A (1981) The timing and significance of orogenic events in the Himalaya. In: Liu DS (ed) Geology, Geological History and Origin of Qinghai-**zang Plateau. Science Press, Bei**g, pp 23–28

    Google Scholar 

  • Garlick GD (1966) Oxygen isotopic fractionation in igneous rocks, Earth Planet Sci Lett 1:361–368

    Google Scholar 

  • Gonfiantini R (1984) Report on Advisory Group meeting on stable isotope reference samples for geochemical and hydrological investigations. Internat Atomic Energy Agency, Vienna

    Google Scholar 

  • Harmon RS, Thorpe RS, Francis PW (1981) Petrogenesis of Andean andesites from combined O-Sr isotope relationships. Nature 290:396–399

    Google Scholar 

  • Harmon RS, and 8 others (1984) Regionl O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc London 141:803–822

    Google Scholar 

  • Harris NBW, Xu Rong-hua, Lewis CL, Hawkesworth CJ, Zhang Yuquan (in press) Isotope geochemistry of the Tibetan plateau

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Hollister LS (1966) Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science 154:1647–1649

    Google Scholar 

  • Honegger K, Dietrich V, Frank W, Gansser A, Thöni M, Trommsdorff V (1982) Magmatism and metamorphism in the Ladakh Himalayas, Earth Planet Sci Lett 60:253–292

    Google Scholar 

  • Isshiki N (1963) Petrology of Hachijo-Jima volcano group, Seven Izu Islands, Japan. Tokyo Univ Fac Sci J Set 2, 15:91–134

    Google Scholar 

  • Ito E, Stern RJ (1986) Oxygen and strontium isotopic investigations of subduction zone volcanism: the case of the Volcano Arc and the Marianas Island Arc. Earth Planet Sci Lett 76:312–320

    Google Scholar 

  • Ito E, White WM, Göpel C (1987) The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem Geol 62:157–176

    Google Scholar 

  • ** Cheng-wei (1982) On the magmatism and island arc evolution of the Gangdese area, **zang. Res Geol Inst Geol, Academia Sinica (Bei**g) 49–54 (with Engl abstract)

  • ** Cheng-wei, Zhou Yun-sheng (1978) Igneous rock belts in the Himalayas and the Gangdese arc and their genetic model. Scientia Geol Sinica 4:297–312

    Google Scholar 

  • Kalamarides RI (1984) Kiglapait geochemistry VI: oxygen isotopes. Geochim Cosmochim Acta 48:1827–1836

    Google Scholar 

  • Kalamarides RI (1986) High-temperature oxygen isotope fractionation among the phases of the Kiglapait intrusion, Labrador, Canada. Isotope Geosci 58:303–310

    Google Scholar 

  • Kyser T, O'Neil JR, Carmichael ISE (1982) Genetic relationships among basic lavas and ultramatic modules: evidence from oxygen isotope compositions. Contri Mineral Petrol 81:88–102

    Google Scholar 

  • Lassey KR, Blattner P (1988) Kinetically controlled oxygen isotope exchange between fluid and rock in one-dimensional advective flow. Geochim Cosmochim Acta 52:2169–2175

    Google Scholar 

  • LeFort (1981) Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement. J Geophys Res 86B:10545–68

    Google Scholar 

  • Liao Zhi-jie, Guo Guo-ying, Liu Shi-bin (1980) Predevelopment study of Yangbajain geothermal field, **zang. Proc 2nd NZ Geothermal Workshop, Auckland pp 109–115

  • Matsuhisa Y (1979) Oxygen isotopic compositions of volcanic rocks from the East Japan island island arcs and their bearing on petrogenesis. J Volcanol Geotherm Res 5:271–296

    Google Scholar 

  • Morse SA (1969) The Kiglapait layered intrusion, Labrador. Geol Soc Am Mem 112

  • Morse SA (1981) Kiglapait geochemistry IV: the major elements. Geochim Cosmochim Acta 45:461–479

    Google Scholar 

  • Munksgaard NC (1984) High (δ 18O and possible pre-eruptional Rb-Sr isochrons in cordierite-bearing Neogene volcanics from SE Spain. Contrib Mineral Petrol 87:351–358

    Google Scholar 

  • Neumann H, Mead J, Vitaliano CJ (1954) Trace element variation during fractional crystallisation as calculated from the distribution law. Geochim Cosmochim Acta 6:90–99

    Google Scholar 

  • Notsu K, Isshiki N, Hirano M (1983) Comprehensive strontium isotope study of Quaternary volcanic rocks from the Izu-Ogasawara arc. Geochem J 17:289–302

    Google Scholar 

  • Pichavant M, Montel JM (1988) Petrogenesis of a two-mica ignimbrite suite: the Macusani Volcanics, SE Peru. Trans R Soc Edinburgh Earth Sci 79:197–207

    Google Scholar 

  • Powell C McA (1986) Continental underplating model for the rise of the Tibetan plateau. Earth Planet Sci Lett 81:79–94

    Google Scholar 

  • Schärer U, Hamet J, Allegre CJ (1984) The Transhimalaya (Gangdese) Plutonism in the Ladakh region: a U-Pb and Rb-Sr study. Earth Planet Sci Lett 67:327–339

    Google Scholar 

  • Schärer U, Xu Rong-Hua, Allegre CJ (1984) U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-**gaze region, Tibet. Earth Planet Sci Lett 69:311–320

    Google Scholar 

  • Sheppard SMF, Harris C (1985) Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites. Contrib Mineral Petrol 91:74–81

    Google Scholar 

  • Srimal N (1986) India-Asia collision: implications from the geology of the eastern Karakoram. Geology 14:523–527

    Google Scholar 

  • Taylor HP Jr (1968) The oxygen isotope geochemistry of igenous rocks. Contrib Mineral Petrol 19:1–71

    Google Scholar 

  • Taylor HP Jr, Epstein S (1962) Relationship between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks. Parts I and II. Geol Soc Am Bull 73:461–479 and 675–694

    Google Scholar 

  • Wan Zi-yi, and seven others (1982) Tectonics of Yarlung Tsangbo suture zone **zang (Tibet). Guide to geological excursion. Geological Bureau of **zang, China, Lhasa, 24 pp

    Google Scholar 

  • Weis D, Demaiffe D, Cauet S, Javoy M (1987) Sr, Nd, O and H isotopic ratios in Ascension Island lavas and plutonic inclusions; cogenetic origin. Earth Planet Sci Lett 82:255–268

    Google Scholar 

  • Woodhead JD, Harmon RS, Fraser DG (1987) O, S, Sr, and Pb isotope variations in volcanic rocks from the northern Mariana Islands: implications for crustal recycling in intra-oceanic arcs. Earth Planet Sci Lett 83:39–52

    Google Scholar 

  • Xu Rong-hua, ** Cheng-wei (1984) A geochronological study of the Quxu batholith, **zang. Scientia Geologica Sinica:414–422

  • Xu Rong-hua, Schärer U, Allegre CJ (1985) Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. J Geol 93:41–57

    Google Scholar 

  • Xu Yong (1988) Thesis, Dept of Geology, Bei**g University

  • Zhou Yun-sheng, ** Cheng-wei (1983) Plutonism and its tectonic environment in the Gangdese and Nyainqentanglha Mts of **zang, China. In: Shams FA (ed) Granites of Himalayas Karakorum and Hindukusch. Punjab Univ Lahore, pp 393–406

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blattner, P., Cheng-wei, J. & Yong, X. Oxygen isotopes in mantle related and geothermally altered magmatites of the Transhimalayan (Gangdese) ranges. Contr. Mineral. and Petrol. 101, 438–446 (1989). https://doi.org/10.1007/BF00372217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372217

Keywords

Navigation