Log in

Residual stress-induced spontaneous microcracking in α-SiC platelet Al2O3 composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The micromechanical stresses associated with hexagonal (6H) α-SiC platelets within a fine-grained alumina matrix were calculated using an Eshelby approach. The stresses within and around the interface of SiC platelets were determined. Both stresses were found to be strongly dependent on the morphology and the volume fraction of the SiC particles. The morphology effect, however, tended to be limited at aspect ratios ⩾ 10. Owing to anisotropy in the thermal and elastic properties of α-SiC, the residual stresses just outside the inclusion also depended on the position along the SiC/Al2O3 interfaces. The maximum tensile stress was found at the edges of SiC platelets. There were two principal tangential tensile stresses which differed greatly at the edges of disc-shaped inclusions. The results of the stress analysis were consistent with observed differences in microcrack morphology and the resultant reduction of the Young's modulus of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. WEI and P. F. BECHER, Am. Ceram. Soc. Bull. 64 (1985) 298.

    CAS  Google Scholar 

  2. P. F. BECHER and G. C. WEI, J. Am. Ceram. Soc. 67 (1984) C-267.

    Article  Google Scholar 

  3. H-W LEE and M. D. SACKS, ibid. 73 (1990) 1884.

    Article  CAS  Google Scholar 

  4. H. M. JANG, W. E. RHINE and H. K.BOWEN, ibid. J. Am. Ceram. Soc. 72

  5. N. CLAUSSEN, in “11th RISO International Symposium on Metallurgy and Materials Science 1990”, edited by J. J. Bentzen, J. B. Bilde-Sorensen, N. Christiansen, A. Horsewell and B. Ralph (Chapman and Hall, London, 1969) p. 1.

    Google Scholar 

  6. G. SANDERS and M. V. SWAIN, Mater. Forum 14 (1990) 60.

    CAS  Google Scholar 

  7. C. NISCHIK, M. M. SEIBOLD, N. A. TRAVILZKY and N. CLAUSSEN, J. Am. Ceram. Soc. 74 (1991) 2464.

    Article  CAS  Google Scholar 

  8. W. B. JOHNSON, A. S. NAGELBERG and E. BREVAL, ibid. 74 (1991) 2903.

    Google Scholar 

  9. Y-S CHOU and D. J. GREEN, ibid., submitted.

    Google Scholar 

  10. Z. LI and R. C. BRADT, ibid. 72 (1989) 70.

    Article  CAS  Google Scholar 

  11. C-H HSEUH, ibid. 72 (1989) 344.

    Article  Google Scholar 

  12. S. MAJUMDAR and D. KUPPERMAN, ibid. 72 (1989) 312.

    Article  CAS  Google Scholar 

  13. A. ABUHASAN, C. BALASINGH and P. PREDECKI, ibid. 73 (1990) 2474.

    Article  CAS  Google Scholar 

  14. S. MAJUMDAR and D. KUPPERMAN and J. SINGH, ibid. 71 (1988) 858.

    Article  CAS  Google Scholar 

  15. Z. LI and R. C. BRADT, Int J. High Tech. Ceram. 4 (1988) 1.

    Article  Google Scholar 

  16. Idem, J. Mater. Sci. 22 (1987) 2557.

    Article  CAS  Google Scholar 

  17. Idem, J. Am. Ceram. Soc. 70 (1987) 445.

    Article  CAS  Google Scholar 

  18. J. D. ESHELBY, Proc. R. Soc. (Lond.) Ser. A 241 (1957) 376.

    Article  Google Scholar 

  19. T. MORI and K. TANAKA, Acta Metall. 21 (1973) 571.

    Article  Google Scholar 

  20. T. MURA and P. C. CHENG, ASME J. Appl. Mech. 44 (1977) 591.

    Article  Google Scholar 

  21. Z. LI and R. C. BRADT, J. Am. Ceram. Soc. 72 (1989) 459.

    Article  CAS  Google Scholar 

  22. Z. LI, PhD thesis, University of Washington, Seattle, WA (1988).

    Google Scholar 

  23. W. E. TEFFT, J. Res. NBS 70A (1966) 277.

    Article  Google Scholar 

  24. J. B. WACHTMAN, JR, T. G. SCUDERI and G. W. CLEEK, J. Am. Ceram. Soc. 45 (1962) 319.

    Article  CAS  Google Scholar 

  25. G. P. TANDON and G. J. WENG, J. Appl. Mech. 53 (1986) 511.

    Article  Google Scholar 

  26. R. W. DAVIDGE and T. J. GREEN, J. Mater. Sci. 3 (1968) 629.

    Article  CAS  Google Scholar 

  27. D. J. GREEN, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, F. F. Lange and D. P. H. Hasselman (Plenum Press, New York, 1983) pp. 457–78.

    Chapter  Google Scholar 

  28. J. SELSING, J. Am. Ceram. Soc. 44 (1961) 419.

    Article  Google Scholar 

  29. Y-S CHOU, PhD thesis, The Pennsylvania State University (1992).

  30. J. A. KUSZYK and R. C. BRADT, J. Am. Ceram. Soc. 56 (1973) 420.

    Article  CAS  Google Scholar 

  31. D. R. CLARKE and D. J. GREEN, in “Advances in Materials Characterization”, edited by D. R. Rossington, R. A. Condrate and R. I. Snyder (Plenum, New York, 1983) p. 323.

    Chapter  Google Scholar 

  32. D. P. H. HASSELMAN and J. O. SINGH, Am. Ceram. Soc. Bull. 58 (1979) 856.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, Y.S., Green, D.J. Residual stress-induced spontaneous microcracking in α-SiC platelet Al2O3 composites. JOURNAL OF MATERIALS SCIENCE 29, 5725–5731 (1994). https://doi.org/10.1007/BF00349972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349972

Keywords

Navigation