Log in

N2O emissions from different crop** systems and from aerated, nitrifying and denitrifying tanks of a municipal waste water treatment plant

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Nitrous oxide emissions, nitrate, water-soluble carbon and biological O2 demand (BOD5) were quantified in different crop** systems fertilized with varying amounts of nitrogen (clayey loam, October 1991 to May 1992), in an aerated tank (March 1993 to March 1994), and in the nitrification-denitrification unit (March to July 1994) of a municipal waste water treatment plant. In addition, the N2O present in the soil body at different depths was determined (February to July 1994). N2O was emitted by all crop** systems (mean releases 0.13–0.35 mg N2O m-2 h-1), and all the units of the domestic waste water treatment plant (aerated tank 0–6.2 mg N2O m-2 h-1, nitrification tank 0–204,3 mg N2O m-2, h-1, denitrifying unit 0–2.2 mg N2O m-2 h-1). During the N2O-sampling periods estimated amounts of 0.9, 1.5, 2.4 and 1.4 kg N2O−N ha-1, respectively, were released by the crop** systems. The aerated, nitrifying and denitrifying tanks of the municipal waste water treatment plant released mean amounts of 9.1, 71.6 and 1.8 g N2O−N m-2, respectively, during the sampling periods.

The N2O emission were significantly positively correlated with nitrate concentrations in the field plots which received no N fertilizer and with the nitrogen content of the aerated sludge tank that received almost exclusively N in the form of NH +4 . Available carbon, in contrast, was significantly negatively correlated with the N2O emitted in the soil fertilized with 80 kg N ha-1 year. The significant negative correlation between the emitted N2O and the carbon to nitrate ratio indicates that the lower the carbon to nitrate ratio the higher the amount of N2O released. Increasing N2O emissions seem to occur at electron donorto-acceptor ratios (CH2O or BOD5-to-nitrate ratios) below 50 in the crop** systems and below 1200–1400 in the waste water treatment plant. The trapped N2O in the soil body down to a depth of 90 cm demonstrates that agricultural production systems seem to contain a considerable pool of N2O which may be reduced to N2 on its way to the atmosphere, which may be transported to other environments or which may be released at sometime in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abou-Seada MNI, Ottow JCG (1985) Effect of increasing oxygen concentration on total denitrification and nitrous oxide release from soil by different bacteria. Biol Fertil Soils 1:31–38

    Google Scholar 

  • Benckiser G (1994) Relationships between field-measured denitrification losses, CO2 formation and diffusional constraints. Soil Biol Biochem 26:891–899

    Google Scholar 

  • Benckiser G, Simarmata T (1994) Environmental impact of fertilizing soils by using sewage and animal wastes. Fert Res 37:1–22

    Google Scholar 

  • Benckiser G, Syring KM, Gaus G, Haider K, Sauerbeck D (1987) Denitrification losses from an Inceptisol field treated with mineral fertilizer or sewage sludge. Z Pflanzenernaehr Bodenkd 150:241–248

    Google Scholar 

  • Benckiser G, Lorch HJ, Ottow JCG (1995) Quantification of total denitrification losses from undisturbed field soils by the acetylene inhibition technique. In: Alef K, Nannipieri P (eds) Methods in applied microbiology and biochemistry. Academic Press, London, pp 473–478

    Google Scholar 

  • Blackmer AM, Bremner JM, Schmidt EL (1980) Production of nitrous oxide by ammonium-oxidizing chemoautotrophic microorganisms in soil. Appl Environ Microbiol 40:1060–1064

    Google Scholar 

  • Bock E, Widerer PA, Freitag A (1988) Growth of Nitrobacter in the absence of dissolved oxygen. Water Res 22:245–250

    Google Scholar 

  • Bock E, Schmidt I, Stüven R, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptors. Arch Microbiol 163:16–20

    Google Scholar 

  • Burford JR, Bremner JM (1975) Relationship between the denitrification capacities of soils and total water-soluble readily decomposable soil organic matter. Soil Biol Biochem 7:389–394

    Google Scholar 

  • Chalamet A (1990) Source and sink mechanisms related to denitrification measurement. Mittlgn Dtsch Bodenkdl Gesellsch 60:65–72

    Google Scholar 

  • Davidson EA (1991) Fluxes of nitrous oxide from terrestrial ecosystems. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases; methane, nitrous oxides and halomethanes. Am Soc Microbiol, Washington, DC, pp 219–235

    Google Scholar 

  • Dritter Bericht der Enquete-Kommission (1994) Schutz der Erdatmosphäre, Econimica Verlag, DS 12/8350, Sachgebiet 2129, pp 71–88

  • Hazzard JH, Gorga JC, Gaughey WS (1985) Determination of anesthetic molecule environments by infrared spectroscopy. II Multiple sites for nitrous oxide in proteins, lipids and brain tissue. Arch Biochem Biophys 240:747–756

    Google Scholar 

  • Hooper AB, Arciero DM, DiSpirito AA, Fuchs J, Johnson M, LaQuier F, Mundfrom G, McTavish H (1990) Production of nitrite and N2O by the ammonia-oxidizing nitrifiers. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: Achievements and Objectives. Chapman and Hall, New York, pp 387–392

    Google Scholar 

  • Kemper WD, Rosenau R, Nelson S (1985) Gas displacement and aggregate stability of soils. Soil Sci Soc Am J 49:25–28

    Google Scholar 

  • Körner R, Benckiser G, Ottow JCG (1993) Quantifizierung der Lachgas (N2O)-Freisetzung aus Kläranlagen unterschiedlicher Verfahrensführung. Korres Abwasser 40:514–525

    Google Scholar 

  • Lehn-Reiser M, Benckiser G, Ottow JCG (1991) Mikrobielle Aktivität Dimethylsulfoxid-Reduktaseaktivität, aktuelle und potentielle Denitrifikationskapazität, BSB5 der Dränzone landwirtschaftlich genutzter Böden im Wassereinzugsgebiet Süchteln. Mittlgn Dtsch Bodenkundl Gesellsch 66:555–558

    Google Scholar 

  • Linn A, Benckiser G, Ottow JCG (1995) In situ-Quantifizierung der N2O-Freisetzung aus den Nitrifikations- und Denitrifikationsbecken der Kläranlage Gießen in Abhängigkeit von den chemischphysikalischen Abwassereigenschaftren VDLUFA Schriftr 39: 595–598

    Google Scholar 

  • Lorch H-J (1993) Mikrobiologische Charakterisierung und Stoffumsatz der einzelnen Reinigungsstufen verschiedener belüfteter Abwasserteichanlagen im ländlichen Raum. Habilitationsschrift, Justus-Liebig University Gießen

  • Martikainen PJ, De Boer W (1993) Nitrous oxide production and nitrification in an acidic soil from a Dutch coniferous forest. Soil Biol Biochem 25:343–347

    Google Scholar 

  • Minami K (1987) Emission of nitrous oxide (N2O) dissolved in drainage water from agroecosystems. J Agr Res Quat 21:22–27

    Google Scholar 

  • Moraghan JG, Buresh RJ (1977) Correction for dissolved nitrous oxide in nitrogen studies. Soil Sci Soc Am J 41:1201–1203

    Google Scholar 

  • Mosier AR, Schimel DS (1993) Nitrification and denitrification. In: Knowles R, Blackburn TH (eds) Nitrogen isotope techniques. Academic Press, London, pp 181–208

    Google Scholar 

  • Myrold DD, Tiedje JM (1985) Establishment of denitrification capacity in soil: Effects of carbon, nitrate and moisture content. Soil Biol Biochem 17:819–822

    Google Scholar 

  • Navone R (1964) Proposed method for nitrate in potable waters. J Am Water Works Assoc 56:781–783

    Google Scholar 

  • Ottow JCG (1992) Denitrifikation, eine kalkulierbare Größe in der Stickstoffbilanz von Böden? Wasser und Boden 9:578–581

    Google Scholar 

  • Ottow JCG, Glathe H (1973) Pedochemie und Pedomikrobiologie hydromorpher Böden: Merkmale, Voraussetzungen und Ursachen der Eisenreduktion. Chem Erde 32:1–44

    Google Scholar 

  • Ottow JCG, Benckiser G (1994) Effect of ecological conditions on total denitrification and N2O release from soils. Nova Acta Leopoldina 288:251–262

    Google Scholar 

  • Papen H, Seiler W (1994) Treibhauseffect, der Beitrag der Landwirtschaft. Praxis Naturw Biol 43:17–21

    Google Scholar 

  • Robertson LA, Kuenen JG (1991) Physiology of nitrifying and denitrifying bacteria. In: Rogers JE, Whiteman WP (eds) Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes. Am Soc Microbiol, Washington DC, pp 189–199

    Google Scholar 

  • Ronen D, Magaritz M, Almon E (1988) Contaminated aquifiers are a forgotten component of the global N2O budget. Nature (London) 335:57–59

    Google Scholar 

  • Scharpf HC, Wehrmann J (1976) Die Bedeutung des Mineralstick-stoffvorrates des Bodens zu Vegetationsbeginn für die Bemessung der N-Düngung zu Winterweizen. Landwirtsch Forsch 32:100–114

    Google Scholar 

  • Schwarz J, Kapp M, Benckiser G, Ottow JCG (1994) Evaluation of denitrification losses by the acetylene inhibition technique in a permanent ryegrass field (Lolium perenne) fertilized with animal slurry or ammonium nitrate. Biol Fertil Soils 18:327–333

    Google Scholar 

  • Simarmata T, Benckiser G, Ottow JCG (1993) Effect of an increasing carbon:nitrate-N ratio on the reliability of acetylene in blocking the N2O-reductase activity of denitrifying bacteria in soil. Biol Fertil Soils 15:107–112

    Google Scholar 

  • Sümer E, Weiske A, Benckiser G, Ottow JCG (1995) Influence of environmental conditions on the amount of N2O released from activated sludge in a domestic waste water treatment plant. Experentia 51:419–422

    Google Scholar 

  • Sümer E, Benckiser G, Ottow JCG (1996) Lachgas (N2O)-Freisetzung aus Belebungsbecken von Kläranlagen in Abhängigkeit von den Abwassereigenschaften. In: Lemmer H, Griebe T, Flemming HC (eds) Mikrobielle Ökologie des Abwassers. Springer, Berlin Heidelberg New York, pp 193–204

    Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley and Sons, New York, pp 179–244

    Google Scholar 

  • Tortoso AC, Hutchinson GL (1990) Contribution of autotrophic and heterotrophic nitrifiers to soil NO and N2O emissions. Appl Environ Microbiol 56:1799–1805

    Google Scholar 

  • Weiske A, Benckiser G, Ottow JCG (1995) Quantifizierung von gelöstem Lachgas (N2O) in Abwasser, Böden und Kompost. VDLUFA Schriftr 39:623–626

    Google Scholar 

  • Wicht H, Beier M (1995) N2O-Emissionen aus nitrifizierenden und denitrifizierenden Kläranlagen. Korres Abwasser 42:405–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor J.C.G. Ottow on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benckiser, G., Eilts, R., Linn, A. et al. N2O emissions from different crop** systems and from aerated, nitrifying and denitrifying tanks of a municipal waste water treatment plant. Biol Fertil Soils 23, 257–265 (1996). https://doi.org/10.1007/BF00335953

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335953

Key words

Navigation