Log in

Dystrophin is not essential for the integrity of the cytoskeleton

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Dystrophin is localized, in normal muscle fibers, on the cytoplasmic surface of the sarcolemma. The function of this protein is not known but, according to its structure and intracellular distribution, it seems likely that dystrophin interacts with other cytoskeletal proteins to form a complex linkage between myofibrils, sarcolemma and extracellular matrix. To evaluate the possibility that dystrophin deficiency induces, per se, a disarray in the cytoskeleton, we studied three components of this structure in muscle fibers of the dystrophic mdx mouse in a phase preceding the onset of necrosis. Vinculin, abundant in sarcolemmal structures called costameres, desmin, the principal component of intermediate filaments and nebulin, constituent of the socalled “third filament” within the sarcomere, were stained with the indirect immunofluorescence technique in cryostat sections. The same monoclonal antibodies were used in Western blots of proteins extracted from the same muscles. No difference was observed in the distribution or in the relative abundance of the three proteins, comparing muscles from 18 days-old mdx and control mice. Our results indicate that the lack of dystrophin does not induce, per se, alterations in the structures linking the sarcolemma to the contractile apparatus. It is likely that the structural damage in dystrophin-less muscle fibers is initially confined to limited portions of the plasma membrane. These focal lesions, impairing intracellular calcium homeostasis, can lead to muscle fiber necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alloisio N, Morle L, Bachir D, Guetarni D, Colonna P, Delaunay J (1985) Red cell sialoglycoprotein β in homozygous and heterozygous 4.1(-) hereditary elliptocytosis. Biochim Biophys Acta 816: 57–62

    Google Scholar 

  2. Arahata K, Ishiura S, Ishiguro T, Tsukahara T, Suhara Y, Eguchi C, Ishihara T, Nonaka I, Ozawa E, Sugita H (1983) Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide. Nature 333: 861–866

    Google Scholar 

  3. Bakker AJ, Head SI, Williams DA, Stephenson DG (1993) Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice. J Physiol (Lond) 460: 1–13

    Google Scholar 

  4. Belkin AM, Oraatsky OI, Glukhova MA, Koteliansky VE (1988) Immunolocalization of meta-vinculin in human smooth and cardiac muscles. J Cell Biol 107: 545–553

    Google Scholar 

  5. Bonilla E, Miranda AF, Prelle A, Salviati G, Betto R, Zeviani M, Schon EA, DiMauro S, Rowland LP (1988) Immunocytochemical study of nebulin in Duchenne muscular dystrophy. Neurology 38: 1600–1603

    Google Scholar 

  6. Bulfield G, Siller WG, Wight PAL, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81: 1189–1192

    Google Scholar 

  7. Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338: 259–262

    Google Scholar 

  8. Carpenter S, Karpati G, Zubrzycka-Gaarn EE, Bulman DE, Ray PN, Worton RG (1990) Dystrophin is localized to the plasma membrane of human skeletal muscle fibers by electron-microscopic cytochemical study. Muscle Nerve 13: 376–380

    Google Scholar 

  9. Cullen MJ, Jaros E (1988) Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Acta Neuropathol 77: 69–81

    Google Scholar 

  10. Cullen MJ, Fulthorpe JJ, Harris JB (1992) The distribution of desmin and titin in normal and dystrophic human muscle. Acta Neuropathol 83: 158–169

    Google Scholar 

  11. Dickson G, Azad A, Morris GE, Simon H, Noursadeghi M, Walsh FS (1992) Colocalization and molecular association of dystrophin with laminin at the surface of mouse and human myotubes. J Cell Sci 103: 1223–1233

    Google Scholar 

  12. Dunn JF, Bannister N, Kemp GJ, Publicover SJ (1993) Sodium is elevated in mdx muscles: ionic interactions in dystrophic cells. J Neurol Sci 114: 76–80

    Google Scholar 

  13. Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66: 1121–1131

    Google Scholar 

  14. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122: 809–823

    Google Scholar 

  15. Franco A, Lansman JB (1990) Calcium entry through stretchinactivated ion channels in mdx myotubes. Nature 344: 670–673

    Google Scholar 

  16. Fürst D, Nave R, Osborn M, Weber K, Bardosi A, Arcidiacono N, Ferro M, Romano V, Romeo G (1987) Nebulin and titin expression in Duchenne muscular dystrophy appears normal. FEBS Lett 224: 49–53

    Google Scholar 

  17. Glukhova MA, Kabakov AE, Belkin AM, Frid MG, Ornatsky OI, Zhidkova NI, Koteliansky VE (1986) Metavinculin distribution in adult human tissues and cultured cells. FEBS Lett 207: 139–141

    Google Scholar 

  18. Granger BL, Lazarides E (1979) Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18: 1053–1063

    Google Scholar 

  19. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919–928

    Google Scholar 

  20. Hoffman EP, Fischbeck KH, Brown RH, Johnson M, Medori R, Loike JD, Harris JB, Waterston R, Brooke M, Specht L, Kupsky W, Chamberlain J, Caskey CT, Shapiro F, Kunkel LM (1988) Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. N Engl J Med 318: 1363–1368

    Google Scholar 

  21. Hutter OF, Burton FL, Bovell DL (1991) Mechanical properties of normal and mdx mouse sarcolemma: bearing on function of dystrophin. J Muscle Res Cell Motil 12: 585–589

    Google Scholar 

  22. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355: 696–702

    Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  24. Law DJ, Tidball JG (1993) Dystrophin deficiency is associated with myotendinous junction defects in prenecrotic and fully regenerated skeletal muscle. am J Pathol 142: 1513–1523

    Google Scholar 

  25. Massa R, Karpati G, Weller B, Carpenter S, Shoubridge E (1991) Quantitative studies of dystrophin-positive fibers in mdx muscles. Neurology 41 [Suppl 1]: 136

    Google Scholar 

  26. Masuda T, Fujimaki N, Ozawa E, Ishikawa H (1992) Confocal laser microscopy of dystrophin localization in guinea pig skeletal muscle fibers. J Cell Biol 119: 543–548

    Google Scholar 

  27. Matsumura K, Shimizu T, Nonaka I, Mannen T (1989) Immunochemical study of connectin (titin) in neuromuscular diseases using a monoclonal antibody: connectin is degraded extensively in Duchenne muscular dystrophy. J Neurol Sci 93: 147–156

    Google Scholar 

  28. Minetti C, Tanji K, Bonilla E (1992) Immunologic study of vinculin in Duchenne muscular dystrophy. Neurology 42: 1751–1754

    Google Scholar 

  29. Moggio M, Fagiolari G, Prelle A, Gallanti A, Sciacco M, Scarlato G (1992) Lack of anionic phospholipid calcium binding sites in Duchenne muscular dystrophy. Muscle Nerve 15: 325–331

    Google Scholar 

  30. Ohlendieck K, Campbell KP (1991) Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J Cell Biol 115: 1685–1694

    Google Scholar 

  31. Ohlendieck K, Ervasti JM, Snook JB, Campbell KP (1991) Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J Cell Biol 112: 125–148

    Google Scholar 

  32. Ohlendieck K, Matsumura K, Ionasescu V, Towbin JA, Bosch EP, Weinstein SL, Sernett SW, Campbell KP (1993) Duchenne muscular dystrophy: deficiency of dystrophin-associated proteins in the sarcolemma. Neurology 43: 795–800

    Google Scholar 

  33. Pardo JV, D'Angelo Siliciano J, Craig SW (1983) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements “costameres” mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci USA 80: 1008–1012

    Google Scholar 

  34. Pearson J, Sabarra A (1974) A method for obtaining longitudinal cryostat sections of living muscle without contraction artifacts. Stain Technol 49: 143–146

    Google Scholar 

  35. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90: 3710–3714

    Google Scholar 

  36. Porter GA, Dmytrenko GM, Winkelmann JC, Bloch RJ (1992) Dystrophin colocalizes with β-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol 117: 997–1005

    Google Scholar 

  37. Reddy PA, Anandavalli TE, Anandaraj MPJS (1986) Calcium activated neutral proteases (milli- and micro-CANP) and endogenous CANP inhibitor of muscle in Duchenne muscular dystrophy. Clin Chim Acta 160: 281–288

    Google Scholar 

  38. Salviati G, Betto R, Ceoldo S, Biasia E, Bonilla E, Miranda AF, DiMauro S (1989) Cell fractionation studies indicate that dystrophin is a protein of surface membranes of skeletal muscle. Biochem J 258: 837–841

    Google Scholar 

  39. Shear CR, Bloch RJ (1985) Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J Cell Biol 101: 240–256

    Google Scholar 

  40. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244: 1578–1580

    Google Scholar 

  41. Small JV, Fürst DO, Thornell LE (1992) The cytoskeletal lattice of muscle cells. Eur J Biochem 208: 559–572

    Google Scholar 

  42. Spencer MJ, Tidball JG (1992) Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Exp Cell Res 203: 107–114

    Google Scholar 

  43. Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352: 536–539

    Google Scholar 

  44. Straub V, Bittner RE, Léger JJ, Voit T (1992) Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J Cell Biol 119: 1183–1191

    Google Scholar 

  45. Terracio L, Simpson DG, Hilenski L, Carver W, Decker RS, Vinson N, Borg TK (1990) Distribution of vinculin in the Z-disk of striated muscle: analysis by laser scanning confocal microscopy. J Cell Physiol 145: 78–87

    Google Scholar 

  46. Tokuyasu KT, Dutton AH, Singer SJ (1983) Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken skeletal muscle. J Cell Biol 96: 1727–1735

    Google Scholar 

  47. Torres LFB, Duchen LW (1987) The mutant mdx: inherited myopathy in the mouse. Brain 110: 269–299

    Google Scholar 

  48. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    Google Scholar 

  49. Turner PR, Westwood T, Regen CM, Steinhardt RA (1988) Increased protein degradation results from elevated free calcium levels found in muscle mdx mice. Nature 335: 735–738

    Google Scholar 

  50. Turner PR, Fong P, Denetclaw WF, Steinhardt RA (1991) Increased calcium influx in dystrophic muscle. J Cell Biol 115: 1701–1712

    Google Scholar 

  51. Voit T, Patel K, Dunn MJ, Dubowitz V, Strong PN (1989) Distribution of dystrophin, nebulin and Ricinus communis I (RCA I)-binding glycoprotein in tissues of normal and mdx mice. J Neurol. Sci 89: 199–211

    Google Scholar 

  52. Wakayama Y, Shibuya S (1991) Gold-labelled dystrophin molecule in muscle plasmalemma of mdx control mice as seen by electron microscopy of deep etching replica. Acta Neuropathol 82: 178–184

    Google Scholar 

  53. Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107: 2199–2212

    Google Scholar 

  54. Weller B, Karpati G, Carpenter S (1990) Dystrophin-deficient mdx muscle fibers are preferentially vulnerable to necrosis induced by experimental lengthening contractions. J Neurol Sci 100: 9–13

    Google Scholar 

  55. Wood DS, Zeviani M, Prelle A, Bonilla E, Salviati G, Miranda AF, DiMauro S, Rowland LP (1987) Is nebulin the defective gene product in Duchenne muscular dystrophy? N Engl J Med 316: 107–108

    Google Scholar 

  56. Zubrzycka-Gaarn EE, Bulman DE, Karpati G, Burghes AHM, Belfall B, Klamut HJ, Talbot J, Hodges RS, Ray PN, Worton RG (1988) The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 333: 466–469

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from Telethon, Italy to R. Massa and to L. Castellani. G. Silvestri is the recipient of a Telethon post-graduate fellowship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massa, R., Castellani, L., Silvestri, G. et al. Dystrophin is not essential for the integrity of the cytoskeleton. Acta Neuropathol 87, 377–384 (1994). https://doi.org/10.1007/BF00313607

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313607

Key words

Navigation