Log in

Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin

  • Original Paper
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

The Spessart Crystalline Complex, north-west Bavaria contains two orthogneiss units of granitic to granodioritic composition, known as the Rotgneiss and Haibach gneiss, respectively, which are structurally conformable with associated metasediments. The igneous origin of the Rotgneiss is apparent from field and textural evidence, whereas strong deformation and recrystallization in the Haibach gneiss has obscured most primary textures. New geochemical data as well as zircon morphology prove the Haibach gneiss to be derived from a granitoid precursor, which was chemically similar to the Rotgneiss protolith, thus suggesting a genetic link between those two rock units. Both gneiss types have chemical compositions typical of anatectic two-mica leucogranites. They show characteristics of both I- and S-type granites. Rb-Sr whole rock data on the Haibach gneiss provide an isochron age of 407±14 Ma (IR = 0.7077±0.0007; MSWD 2.2), which is slightly younger than the published date for the Rotgneiss (439±15 Ma; IR=0.7048±0.0026; MSWD 4.9). Single zircon dating of six idiomorphic grains, using the evaporation method, yielded a mean 207Pb/206Pb age of 410±18 Ma for the Haibach gneiss and 418±18 Ma for the Rotgneiss. Both zircon ages are within analytical error of the Rb-Sr isochron dates and are interpreted to reflect the time of protolith emplacement in Silurian times. Three xenocrystic zircon grains from the Rotgneiss yielded 207Pb/206Pb ages of 2278±12, 2490±13 and 2734±10 Ma, respectively, suggesting that late Archaean to early Proterozoic crust was involved in the generation of the granite from which the Rotgneiss is derived. Although it is assumed that the granitic protoliths of the two gneisses were formed through anatexis of older continental crust, the relatively low 87Sr/86Sr initial ratios of both gneisses may also indicate the admixture of a mantle component. The Rotgneiss and the Haibach gneiss thus document granitic magmatism at an active continental margin during late Silurian times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol 48:43–55

    Google Scholar 

  • Bederke E (1957) Alter und Metamorphose des kristallinen Grundgebirges im Spessart. Abhandl hess Landesamt Bodenforsch 18:7–19

    Google Scholar 

  • Braitsch O (1957) Zur Petrographic und Tektonik des Biotitgneises im südlichen Vorspessart. Abhandl hess Landesamt Bodenforsch 18:73–99

    Google Scholar 

  • Brooks C, Hart SR, Wendt I (1972) Realistic use of two-error regression treatments as applied to rubidium-strontium data. Rev Geophys Space Phys 10:551–577

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8:173–174

    Google Scholar 

  • Clarke DB (1992) Granitoid Rocks. Chapman and Hall, London

    Google Scholar 

  • Dallmeyer RD, Franke W, Weber K (eds). Tectonostratigraphic evolution of the Central European Orogens. IGCP Project 233, Tectonic Series. Springer, Berlin, Heidelberg, New York, in press

  • de la Roche H, Leterrier J, Grand Claude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analyses — its relationships with current nomenclature. Chem Geol 29:183–210

    Article  Google Scholar 

  • Dombrowski A (1992) Der Haibacher Biotitgneis im südöstlichen kristallinen Vorspessart. Unpubl Diploma Thesis, Würzburg, 114 pp

  • Franke W (1989a) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:693–708

    Google Scholar 

  • Franke W (1989b) Variscan plate tectonics in Central Europe — current ideas and open questions. Tectonophysics 169:221–228

    Article  Google Scholar 

  • Franke W (1990) Rhenohercynian Basin and Mid-German Crystalline Rise — an introduction. In: Franke W (ed) Mid-German Crystalline Rise & Rheinisches Schiefergebirge. Field Guide to Pre-conference excursion. IGCP 233. Terranes in the Circum-Atlantic Paleozoic Orogens. Conference on Paleozoic Orogens in Central Europe — Geology and Geophysics. Göttingen, Giessen, pp 1–15

  • Franke W, Oncken O (1990) Geodynamic evolution of the North-Central Variscides — a comic strip. In: Freeman R, Giese P, Mueller St (eds) The European Geotraverse: Integrative Studies. Results from the Fifth Study Centre, Rauischholzhausen (26 March – 7 April 1990). European Science Foundation, Strasbourg, pp 187–194

    Google Scholar 

  • Harland WB, Cox AV, Lwellyn PG, Pickton CAG, Smith AG, Walters R (1982) Geological Time Scale. Cambridge Univ Press, Cambridge, 131 pp

    Google Scholar 

  • Harre W, Lenz H, Müller G, Wendt I (1964) Untersuchungen zur Altersbestimmung von Gesteinen nach der Rubidium/Strontium-Methode. Berichte Bundesanst Bodenforsch, 139 pp

  • Harris NBW, Pearce JA, Tindle AG (1983) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision Tectonics. Geol Soc Spec Publ 19, Blackwell London, pp 67–81

    Google Scholar 

  • Hirschmann G, Okrusch M (1988) Spessart-Kristallin und Ruhlaer Kristallin als Bestandteile der Mitteldeutschen Kristallinzone — ein Vergleich. N Jahrb Geol Paläontol Abh 177:1–39

    Google Scholar 

  • Holtz F, Pichavant M, Barbey P, Johannes W (1992) Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. Am Mineral 77:1223–1241

    Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age investigations in single zircon using a double filament thermal ion source. Contrib Mineral Petrol 93:482–490

    CAS  Google Scholar 

  • Kober B (1987) Single zircon evaporation combined with Pb emitter bedding for 207Pb/206Pb-age investigations using thermal mass ion spectrometry, and implications to zirconology. Contrib Mineral Petrol 96:63–71

    CAS  Google Scholar 

  • Kober B, Pidgeon RT, Lippolt HJ (1989) Single-zircon dating by stepwise Pb-evaporation constraints the Archean history of detrital zircons from the Jack Hills, Western Australia. Earth Planet Sci Lett 91:286–296

    Google Scholar 

  • Kreuzer H, Lenz H, Harre W, Matthes S, Okrusch M, Richter P. (1973) Zur Altersstellung der Rotgneise im Spessart, Rb/Sr-Gesamtgesteinsdatierungen. Geol Jahrb A9:69–88

    Google Scholar 

  • Kröner A, Byerly GR, Lowe DR (1991a) Chronology of early Archean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation. Earth Planet Sci Lett 103:41–54

    Article  PubMed  Google Scholar 

  • Kröner A, Frischbutter A, Bergner R, Hofmann J (1991b) Zirkon-Evaporationsalter von granitoiden Gesteinen aus dem Erzgebirge und dem Rande der Lausitz und ihre geodynamische Bedeutung. 7. Rundgespräch Varistikum, Freiberg/Sachsen, Abstr-Vol:27

  • Kröner A, Todt W (1988) Single zircon dating constraining the maximum age of the Barberton greenstone belt, southern Africa. J Geophys Res 93:15329–15337

    Google Scholar 

  • Kröner A, Hegner E, Hammer J, Bielicki K-H, Haase G, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusitanian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83:357–376

    Google Scholar 

  • Liew TC, Hofmann A (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe; indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    CAS  Google Scholar 

  • Lippolt HJ (1986) Nachweis altpaläozoischer Primär-Alter (RbSr) und karbonischer Abkühlungsalter (K-Ar) der Muskovit-Biotit-Gneise des Spessart und der Biotit-Gneise des Bollsteiner Odenwald. Geol Rundsch 75:569–583

    Google Scholar 

  • Luth WC, Jahns RJ, Tuttle OF (1964) The granite system at pressures of 4–10 kilobars. J Geophys Res 69:759–773

    Google Scholar 

  • Matthes S, Okrusch M (1965) Petrographische Untersuchung zur Frage der Rotgneise im Spessart. Geologie 14:1148–1200

    Google Scholar 

  • Meisl S (1990) Metavolcanic rocks in the “Northern Phyllite Zone” at the southern margin of the Rhenohercynian belt. In: Franke W (ed) Mid-German Crystalline Rise & Rheinisches Schiefergebirge. Field Guide to Pre-conference Excursion. IGCP 233 — Terranes in the Circum-Atlantic Paleozoic Orogens. Conference on Paleozoic Orogens in Central Europe —Geology and Geophysics. Giessen, Göttingen, pp 25–42

  • Nasir S, Okrusch M. (1991) Metabasites from the Central Vor-Spessart, North-West Bavaria. Part 1: Geochemistry. N Jahrb Mineral Monatsh 1991:500–522

    Google Scholar 

  • Nasir S, Okrusch M, Kreuzer H, Lenz H, Höhndorf A (1991) Geochronology of the Spessart Crystalline Complex, Mid-German Crystalline Rise. Mineral Petrol 44:39–55

    Google Scholar 

  • Neumann W (1966) Versuch eines lithostratigraphischen Vergleiches von Grundgebirgsanschnitten im Bereich der Mitteldeutschen Schwelle. Geologie 15:942–962

    Google Scholar 

  • Odin GS (1982) Interlaboratory standards for dating purposes. In: Odin GS (ed) Numerical Dating in Stratigraphy. Wiley, New York, pp 123–150

    Google Scholar 

  • Okrusch M (1983) The Spessart Crystalline Complex, Northwest Bavaria. DMG SFMC Joint Meeting 1983. Excursion E 4. Fortschr Miner 61, Beiheft 2, 135–169

  • Okrusch M. Chapter IV, E Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Tectonostratigraphic Evolution of the Central European Orogens. IGCP Project 233, Tectonic Series. Springer, Berlin - Heidelberg - New York, in press

  • Okrusch M, Richter P (1967) Petrographische, geochemische und mineralogische Untersuchungen zum Problem der Granitoide im mittleren Spessartkristallin. N Jahrb Mineral Abh 107:21–73

    Google Scholar 

  • Okrusch, M, Richter P (1986) Orthogneisses of the Spessart crystalline complex, northwest Bavaria: Indicators of the geotectonic environment? Geol Rundsch 75:555–568

    Google Scholar 

  • Okrusch M, Weinelt W (1965) Erläuterungen zur Geologischen Karte von Bayern 1:25 000, Blatt Nr. 5921, Schöllkrippen. BGLA, Munich, 327 pp

    Google Scholar 

  • Okrusch M, Streit R, Weinelt W (1967) Erläuterungen zur Geologischen Karte von Bayern 1:25 000, Blatt Nr. 5920, Alzenau i. Ufr. BGLA, Munich, 336 pp

    Google Scholar 

  • Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Pidgeon RT, Furfaro D, Kennedy A, Van Breonswijk W (1994) Calibration of the CZ3 zircon standard for the Curtin SHRIMP II. US Geol Survey Circ

  • Pitcher WS (1979) Comments on the geological environments of granites. In: Atherton MP, Tarney J (eds) Origin of Granite Batholiths — Geochemical Evidence. Shiva, Or**ton, pp 1–9

    Google Scholar 

  • Pitcher WS (1982) Granite type and tectonic environment. In: Hsu KJ (ed) Mountainbuilding processes. Academic Press, London, pp 19–40

    Google Scholar 

  • Reitz E (1987) Palynologie in metamorphen Serien. I. Silurische Sporen aus einem granatführenden Glimmerschiefer des Vor-Spessart. N Jahrb Geol Paläontol Monatsh 1987:699–704

    Google Scholar 

  • Richter P, Stettner G (1979) Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geol Bavarica 78:144 pp

    Google Scholar 

  • Shand SJ (1947) Eruptive Rocks, 3rd edn. Wiley, New York

    Google Scholar 

  • Smoler M (1987) Petrographische, geochemische und phasenpetrologische Untersuchung an Metasedimenten des NW-Spessart, Bayern. Unpubl Dr rer nat Thesis, Univ Würzburg, 256 pp

  • Sommermann A-E, Meisl S, Todt W (1992) Zirkonalter von drei verschiedenen Metavulkaniten des Südtaunus. Geol Jahrb Hessen 118:167–197

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology. Convention and the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  CAS  Google Scholar 

  • Trench A, Torsvik TH (1992) The closure of the Iapetus Ocean and Tornquist Sea: new paleomagnetic constraints. J Geol Soc London 149:867–870

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAl-Si3O8-KAl-Si3O8-SiO2-H2O. Geol Soc Am Mem 74:153 pp

    Google Scholar 

  • Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol (Isotope Geosci Sect) 86:275–285

    Google Scholar 

  • White AIR, Chappell BW (1983) Granitoid types in the Lachlan Fold Belt, southeastern Australia. Geol Soc Am Mem 159:21–34

    Google Scholar 

  • York D (1969) Least squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dombrowski, A., Okrusch, M., Richter, P. et al. Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84, 399–411 (1995). https://doi.org/10.1007/BF00260449

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260449

Key words

Navigation