Log in

Isolation of plasma membrane fragments and vesicles from ascites fluid of lymphoma-bearing mice and their possible role in the escape mechanism of tumors from host immune rejection

  • Original Articles
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Summary

Plasma membranes, generated in vivo by actively growing YAC lymphoma cells, were isolated from cell-free ascites fluid of lymphoma-bearing mice. Partial purification of the ascites fluid (AF) by means of ultracentrifugation resulted in the identification of two main fractions: (a) membrane fragments (AFM s ) and (b) membrane vesicles (AFM p ). Electron microscopy studies, polyacrylamide gel electrophoresis, marker enzymes, and binding capacity of radioactive lectins, have indicated that these membranes are released from the cell surface of YAC lymphoma cells, presumably by a shedding-off mechanism.

In vitro studies have demonstrated that the isolated membranes can specifically inhibit the association of normal macrophages and YAC lymphoma cells. In vivo studies have shown that these membranes can immunize against YAC tumors if injected intramuscularly or subcutaneously into adult mice. The results indicate that the ascites fluid membranes bear tumor-specific antigenic determinants.

Our results suggest that in vivo shedding of plasma membrane fragments or of membrane vesicles by actively growing YAC lymphoma cells may induce a self-protection of ascites tumors from host immune rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

YAC=:

Moloney-virus-induced lymphoma cells grown in A-strain mice

AF=:

ascites fluid of YAC lymphoma-bearing mice

AFMs and AFMp=:

membrane fragments and vesicles isolated from AF

PBS=:

phosphate-buffered saline

Con A=:

Concanavalin A

References

  • Alexander, P.: Escape from immune destruction by the host through shedding of surface antigens: is this a characteristic shared by malignant and embryonic cells? Cancer Res. 34, 2077 (1974)

    Google Scholar 

  • Alexander, P., Connel, D. I., Mikulska, Z. S.: Treatment of murine leukemia with spleen cells or sera from allogeneic mice immunized against the tumor. Cancer Res. 26, 1508 (1966)

    Google Scholar 

  • Ames, B. N., Dubin, D. T.: The role of polyamines in neutralization of bacteriophage deoxyribonucleic acid. J. biol. Chem. 235, 769 (1960)

    Google Scholar 

  • Baldwin, R. W., Barker, C. R.: Tumor specific antigenicity of aminoazo-dye induced rat hepatomas. Int. J. Cancer 2, 355 (1967)

    Google Scholar 

  • Blitterswijk, W. J. Van, Emmelot, P., Hilkmann, H. A. M., Oomen-Meulemans, E. L. S., Inbar, M.: Fluidity difference of normal and leukemic lymphocyte plasma membranes, determined by dynamics and composition of their lipids. Biochim. biophys. Acta (Amst.) 467, 309 (1977)

    Google Scholar 

  • Burger, M. M.: Cell surfaces in neoplastic transformation. In: Current topics in cellular regulation. Horecker, B. L., Stadtman, E. R. (eds.), Vol. 3, p. 135. New York: Academic Press 1971

    Google Scholar 

  • Calafat, J., Hilgers, J., Blitterswijk, W. J. Van, Verbeet, M., Hageman, P. C.: Antibody-induced modulation and shedding of mammary tumor virus antigens on the surfaces of 6R ascites leukemia cells as compared with normal antigens. J. nat. Cancer Inst. 56, 1019 (1976)

    Google Scholar 

  • Cohn, Z. A., Benson, B.: The differentiation of mononuclear phagocytes: Morphology, cytochemistry and biochemistry. J. exp. Med. 121, 153 (1965)

    Google Scholar 

  • Currie, G.: The role of circulating antigen as an inhibitor of tumor immunity in man. Brit. J. Cancer 28 (Suppl. 1), 153 (1973)

    Google Scholar 

  • Currie, G.: Immunological aspects of host resistance to the development and growth of cancer. Biochim. biophys. Acta (Amst.) 458, 135 (1976)

    Google Scholar 

  • Evans, R.: Macrophages in syngeneic animal tumors. Transplantation 14, 468 (1972)

    Google Scholar 

  • Evans, R., Alexander, P.: Cooperation of immune lymphoid with macrophages in tumor immunity. Nature (Lond.) 228, 620 (1970)

    Google Scholar 

  • Evans, R., Alexander, P.: Rendering macrophages specifically cytotoxic by a factor released from immune lymphoid cells. Transplantation 12, 227 (1971)

    Google Scholar 

  • Goldman, R., Raz, A.: Concanavalin A and the in vitro induction in macrophages of vacuolation and lysosomal enzyme synthesis. Exp. Cell Res. 96, 393 (1975)

    Google Scholar 

  • Hauptman, S. P., Sobczak, G.: Origin of immunoglobulin-albumin complexes. Nature (Lond.) 263, 64 (1976)

    Google Scholar 

  • Hibbs, B. J., Jr.: Macrophage non-immunologic recognition: Target cell factors related to contact inhibition. Science 180, 868 (1973)

    Google Scholar 

  • Hibbs, B. J., Jr., Lambert, L. H., Jr., Remington, J. S.: Possible role of macrophage mediated non-specific cytotoxicity in tumor resistance. Nature (Lond.) New Biol. 235, 48 (1972)

    Google Scholar 

  • Hochstadt, J., Quinlan, D. C., Rader, R. L., Li, C. C., Dowd, D.: Use of isolated membrane vesicles in transport studies. In: Methods in membrane biology. Korn, E. D. (ed.), Vol. 5, p. 117. New York: Plenum Publishing Co. 1975

    Google Scholar 

  • Inbar, M., Shinitzky, M.: Cholesterol as a bioregulator in the development and inhibition of leukemia. Proc. nat. Acad. Sci. (Wash.) 71, 4229 (1974)

    Google Scholar 

  • Jose, D. G., Seshardi, R.: Circulating immune complexes in human neuroblastoma: Direct assay and role in blocking specific cellular immunity. Int. J. Cancer 13, 824 (1974)

    Google Scholar 

  • Keller, R.: Cytostatic elimination of syngeneic rat tumor cells in vitro by non-specifically activated macrophages. J. exp. Med. 138, 625 (1973)

    Google Scholar 

  • Keller, R.: Cytostatic killing of syngeneic tumor cells by activated non-immune macrophages. In: Mononuclear phagocytes in immunity, infection and pathology. Van Furth, R. (ed.), p. 857. Oxford: Blackwell Scien. Publ. 1975

    Google Scholar 

  • King, T. E.: Preparation of succinate-cytochrome C reductase and the cytochrome b-c particle, and reconstitution of succinate-cytochrome C reductase. In: Methods in enzymology. Estarbrook, R. E., Pullman, M. E. (ed.), Vol. 10, p. 216. New York: Academic Press 1967

    Google Scholar 

  • Klein, E., Klein, G.: Antigenic properties of lymphoma induced by the Moloney agent. J. nat. Caner Inst. 32, 547 (1964)

    Google Scholar 

  • Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227, 680 (1970)

    PubMed  Google Scholar 

  • Lowry, O. H., Roseborough, N. J., Farr, A. J., Randell, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265 (1951)

    CAS  PubMed  Google Scholar 

  • Mannik, M.: Binding of albumin to γA-myeloma proteins and Waldenström macroglobulin by disulfide bonds. J. Immunol. 99, 899 (1967)

    Google Scholar 

  • Miller, I. R., Great, H.: Protein labelling by actylation. Biopolymers 11, 2533 (1972)

    Google Scholar 

  • Nowotny, A., Groshman, J., Abdelnoor, A., Note, N., Jang, C., Waltersdroff, R.: Escape of TA3 tumors from allogenic immune rejection: Theory and experiments. Europ. J. Immunol. 4, 73 (1974)

    Google Scholar 

  • Raz, A., Goldman, R.: The in vitro effect of hydrocortisone on endocytosis in culture mouse peritoneal macrophages. J. reticuloendoth. Soc. 20, 177 (1976)

    Google Scholar 

  • Raz, A., Inbar, M., Goldman, R.: A differential interaction in vitro of mouse macrophages with normal lymphocytes and malignant lymphoma cells. Europ. J. Cancer 13, 605 (1977)

    Google Scholar 

  • Remington, J. S., Krahenbuhl, J. L., Hibbs, J. B., Jr.: A role of the macrophages in resistance to tumor development and tumor destruction. In: Mononuclear phagocytes in immunity, infection and pathology. Van Furth, R. (ed.), p. 869. Oxford: Blackwell Scien. Publ. 1975

    Google Scholar 

  • Scott, E. R.: Plasma membrane vesiculation: A new technique for isolation of plasma membranes. Science 194, 743 (1976)

    Google Scholar 

  • Shinitzky, M., Inbar, M.: Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J. molec. Biol. 85, 603 (1974)

    Google Scholar 

  • Sjögren, H. O., Hellström, I., Bansal, S. C., Hellström, K. W.: Suggestive evidence that the “blocking-antibodies” of tumor bearing individuals may be antigen-antibody complexes. Proc. nat. Acad. Sci. (Wash.) 68, 1372 (1971)

    Google Scholar 

  • Tamerius, J., Nepo, J., Hellström, I., Hellström, K. W.: Tumor-associated blocking factors: Isolation from sera of tumor bearing mice. J. Immunol. 116, 724 (1976)

    Google Scholar 

  • Thomson, D. M. P., Steele, K., Alexander, P.: The presence of tumor specific membrane antigen in the serum of rats with chemically induced sarcoma. Brit. J. Cancer 27, 27 (1973)

    Google Scholar 

  • Wallach, D. H. F., Kamat, V. B.: Preparation of plasma membrane fragments from mouse ascites tumor cells. In: Methods in enzymology. Ginsburg, V., Neufeld, E. (eds.), Vol. 8, p. 164. New York: Academic Press 1966

    Google Scholar 

  • Wildnell, C. C., Unkeless, J. C.: Partial purification of lipoprotein with 5′-nucleotidase activity from membranes of rat liver cells. Proc. nat. Acad. Sci. (Wash.) 61, 1050 (1968)

    Google Scholar 

  • Wolf, A.: The activity of cell-free tumor fractions in inducing immunity across a weak histocompatibility barrier. Transplantation 7, 49 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raz, A., Goldman, R., Yuli, I. et al. Isolation of plasma membrane fragments and vesicles from ascites fluid of lymphoma-bearing mice and their possible role in the escape mechanism of tumors from host immune rejection. Cancer Immunol Immunother 4, 53–59 (1978). https://doi.org/10.1007/BF00205571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00205571

Keywords

Navigation