Log in

Blue through UV polarization sensitivities in insects

Optimizations for the range of atmospheric polarization conditions

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A Signal-to-Noise optimization model has now been extended to explain the range of species-specific polarization sensitivities of insects. The different polarization sensitivities are shown to represent optimizations for the detection of plane polarized (Rayleigh-scattered) skylight over a range of atmospheric polarization conditions. Rhodopsin absorption spectra with peaks in the Blue (λmax≈450 nm) maximize detection efficiencies under conditions of high polarization. Rhodopsin absorption spectra peaking in the UV (λmax≈350 nm) maximize Signal-to-Noise Ratios for the detection of polarized skylight at the other extreme of low polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum H, Zwehl V von (1964) Die spektrale Empfindlichkeit einzeiner Sehzellen des Bienenauges. Z Vergl Physiol 48: 357–384

    Google Scholar 

  • Bernard GD, Wehner R (1980) Intracellular optical physiology of the bee's eye. I. Spectral sensitivity. J Comp Physiol 137: 193–203

    Google Scholar 

  • Brines ML, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96: 69–91

    Google Scholar 

  • Dartnall HJA (1953) Interpretation of spectral sensitivity curves. Brit Med Bull 9: 24–30

    Google Scholar 

  • Duelli P, Wehner R (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol 86: 37–53

    Google Scholar 

  • Ebrey TG, Honig B (1977) New wavelength dependent visual pigment nomograms. Vision Res 17: 147–151

    Google Scholar 

  • Frisch K von (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften 35: 38–43

    Google Scholar 

  • Frisch K von (1967) The dance language and orientation of bees. Harvard Univ Press, Cambridge, MA

    Google Scholar 

  • Hardie RC, Franceschini N, McIntyre PD (1979) Electrophysiological analysis of fly retina. II. Spectral and polarization sensitivity in R-7 and R-8. J Comp Physiol 133: 23–39

    Google Scholar 

  • Helversen O von, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J Comp Physiol 94: 33–47

    Google Scholar 

  • Henderson ST (1970) Daylight and its spectrum. American Elsevier, New York

    Google Scholar 

  • Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets; a behavioral study. J Comp Physiol A 165: 315–319

    CAS  PubMed  Google Scholar 

  • Hess P (1939) Die spektrale Energieverteilung der Himmelstrahlung. Gerlands Beitr Geophys 55: 204–220

    Google Scholar 

  • Johnson FS (1954) The solar constant. J Meteorol 11: 431–439

    Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: polarizational and angular sensitivity. J Comp Physiol 141: 19–30

    Google Scholar 

  • Labhart T, Hoel B, Valenzuela I (1984) The physiology of the cricket's compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155: 289–296

    Google Scholar 

  • Labs D, Neckel H (1968) The radiation of the solar photosphere from 2000Å to 100 μ. Z Astrophys 69: 1–73

    Google Scholar 

  • Makarova EA, Kharitonov AV (1969) Mean absolute energy distribution in the solar spectrum from 1800Å to 4 mm, and the solar constant. Soviet Astron-AJ 12: 599–609

    Google Scholar 

  • Menzel R, Blakers M (1976) Color receptors in the bee eye morphology and spectral sensitivity. J Comp Physiol 108: 11–33

    Google Scholar 

  • Menzel R, Snyder AW (1974) Polarized light detection in the bee, Apis mellifera. J Comp Physiol 88: 247–270

    Google Scholar 

  • Moon P (1940) Proposed standard solar-radiation curves for engineering use. J Franklin Inst 230: 583–617

    Article  Google Scholar 

  • Penndorf R (1957) Tables of the refractive index for standard air and the Rayleigh scattering coefficient. J Opt Soc Amer 47: 176–182

    Google Scholar 

  • Rossel S (1989) Polarization sensitivity in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of Vision. Springer, Berlin, pp 298–316

    Google Scholar 

  • Rossel S, Wehner R (1984) Celestial orientation in bees, the use of spectral cues. J Comp Physiol A 155: 605–613

    Google Scholar 

  • Rossel S, Wehner R (1987) The bee's E-vector compass. In: Menzel R, Mercer A (eds) Neurobiology and behavior of the honeybee. Springer, Berlin, pp 76–93

    Google Scholar 

  • Rozenberg GV (1966) Twilight: a study in atmospheric optics. Plenum Press, New York

    Google Scholar 

  • Sekera Z (1955) Investigation of polarization of skylight. Final Rept Contr AF 19(122)-239, Univ Calif, Los Angeles

    Google Scholar 

  • Seliger HH, Lall AB, Lloyd JE, Biggley WH (1982a) The colors of firefly bioluminescence I. An optimization model. Photochem Photobiol 36 673–680

    Google Scholar 

  • Seliger HH, Lall AB, Lloyd JE, Biggley WH (1982b) The colors of firefly bioluminescence II. Experimental evidence for the optimization model Photochem Photobiol 36: 681–688

    Google Scholar 

  • Seliger HH, Lall AB, Biggley WH (1983) Blue and ultraviolet spectral sensitivities in insects. Predictions of an optimization model. Paper Ann Mtg Amer Soc Photobiology, Madison Wisconsin. Photochem Photobiol 37: Supplement, p S85

    Google Scholar 

  • Smithsonian Physical Tables (1959) (Prepared by Forsythe WE) 9th rev ed Smithsonian Inst Press, Wash DC

  • Smola U, Meffert P (1978) A single UV-receptor in the eye of Calliphora erythrocephala. J Comp Physiol 103: 353–357

    Google Scholar 

  • Snyder AW, Menzel R (1975) (eds) Photoreceptor optics. Internat Workshop Darmstadt, Germany. Springer, New York

    Google Scholar 

  • Thekaekara MP (1968) The solar constant and the solar spectrum measured from a research aircraft at 38,000 feet. Goddard Space Flight Center Report No X-322-68-304

  • Waterman TH (1975) The optics of polarization sensitivity. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, New York, pp 339–391

    Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. B: Invertebrate visual centers and behavior I. (Handb Sensory Physiol VII/6B). Springer, Berlin Heidelberg New York, pp 281–469

    Google Scholar 

  • Wehner R (1989a) The hymenopteran skylight compass: Matched filtering and parallel coding. J Exp Biol 146: 63–85

    CAS  PubMed  Google Scholar 

  • Wehner R (1989b) Neurobiology of polarization vision. Trends in Neurosci 12: 353–359

    Google Scholar 

  • Wehner R, Rossel S (1985) The bee's celestial compass- A case study in behavioral neurobiology. In: Holldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Fischer, Stuttgart, pp 11–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seliger, H.H., Lall, A.B. & Biggley, W.H. Blue through UV polarization sensitivities in insects. J Comp Physiol A 175, 475–486 (1994). https://doi.org/10.1007/BF00199255

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199255

Key words

Navigation