Log in

Imaging of metabolism and autonomic innervation of the heart by positron emission tomography

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) allows, in combination with multiple radiopharmaceuticals, unique physiological and biochemical tissue characterization. Tracers of blood flow, metabolism and neuronal function have been employed with this technique for research application. More recently, PET has emerged in cardiology as a useful tool for the detection of coronary artery disease and the evaluation of tissue viability. Metabolic tracers such as fluorine-18 deoxyglucose (FDG) permit the specific delineation of ischaemically compromised myocardium. Clinical studies have indicated that the metabolic imaging is helpful in selecting patients for coronary artery bypass surgery or coronary angioplasty. More recent research work has concentrated on the use of carbon-11 acetate as a marker of myocardial oxygen consumption. Together with measurements of left ventricular performance, estimates of cardiac efficiency can be derived from dynamic 11C-acetate studies. The non-invasive evaluation of the autonomic nervous system of the heart was limited in the past. With the introduction of radiopharmaceuticals which specifically bind to neuronal structures, the regional integrity of the autonomic nervous system of the heart can be evaluated with PET. Numerous tracers for pre- and postsynaptic binding sites have been synthesized. 11C-hydroxyephedrine represents a new catecholamine analogue which is stored in cardiac presynaptic sympathetic nerve terminals. Initial clinical studies with it suggest a promising role for PET in the study of the sympathetic nervous system in various cardiac diseases such as cardiomyopathy, ischaemic heart disease and diabetes mellitus. The specificity of the radiopharmaceuticals and the quantitative measurements of tissue tracer distribution provided by PET make this technology a very attractive research tool in the cardiovascular sciences with great promise in the area of cardiac metabolism and neurocardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman EL, Fisher LD, Litwin P, Kaiser GC, Myers WO, Maynard C, Levine F, Schloss M (1983) Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation 68:785–795

    Google Scholar 

  • Allman K, Wolfe E, Sitomer J, Hutchins G, Wieland D, Schwaiger M (1991) C-11 hydroxyephedrine assessment of regional myocardial sympathetic neuronal function following acute myocardial infarction in man (abstract). J Nucl Med 32:1040

    Google Scholar 

  • Angelakos ET (1965) Regional distribution of catecholamines in the dog heart. Circ Res 16:39–44

    Google Scholar 

  • Angelakos ET, King MP, Millard RW (1969) Regional distribution of catecholamines in the heart of various species. Ann NY Acad Sci 156:219–240

    Google Scholar 

  • Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR (1989) Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C]acetate and dynamic positron tomography. Circulation 80:863–872

    Google Scholar 

  • Axelrod J (1960) The fate of adrenaline and noradrenaline. In: Vane J, Wolstenholme G, O'Connor M (eds) Adrenergic mechanisms. Little, Brown, Boston, pp 28–39

    Google Scholar 

  • Bergmann SR (1989) Clinical applications of assessments of myocardial substrate utilization with positron emission tomography. Mol Cell Biochem 88:201–209

    Google Scholar 

  • Bing RJ (1954) The metabolism of the heart. (Harvey Lecture Series, L) Academic Press, London, pp 27–70

    Google Scholar 

  • Bing RJ (1965) Cardiac metabolism. Physiol Rev 45:171–213

    Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubiciotti RS, Sageman WS, Lurie KG, Billigham ME, Harrison DC, Stinton EB (1982) Decreased catecholamine sensitivity and β-adrenergic receptor density in failing human hearts. N Engl J Med 30:205–211

    Google Scholar 

  • Brittain R, Levy G, Tyers M (1969) The neuromuscular blocking action of 2-(4-phenylpiperidono)cyclohexanol (AH5183). Eur J Pharmacol 8:93–99

    Google Scholar 

  • Brown JH, Golstein D (1986) Analysis of cardiac muscarinic receptors recognized selectively by non quaternary but not by quaternary ligands. J Pharmacol Exp Ther 238:580–586

    Google Scholar 

  • Brown MA, Marshall DR, Sobel BE, Bergmann SR (1987) Delineation of myocardial oxygen utilization with carbon-l1-labeled acetate. Circulation 76:687–696

    Google Scholar 

  • Brown MA, Myears DW, Bergmann SR (1988) Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 12:1054–1063

    Google Scholar 

  • Brown MA, Myears DW, Bergmann SR (1989) Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 30:187–193

    Google Scholar 

  • Brunken RC, Schelbert HR (1989) Positron emission tomography in clinical cardiology. Cardiol Clin 7:607–629

    Google Scholar 

  • Brunken RC, Tillisch JH, Schwaiger M, Child JS, Marshall RC, Mandelkern M, Phelps ME, Schelbert HR (1986) Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 73:951–963

    Google Scholar 

  • Brunken RC, Schwaiger M, Groper-McKay M, Phelps ME, Tillisch JH, Schelbert HR (1987) Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 10:557–567

    Google Scholar 

  • Brunken RC, Kottou S, Nienaber CA, Schwaiger M, Ratib OM, Phelps ME, Schelbert HR (1989) PET detection of viable tissue in myocardial segments with persistent defects at Tl-201 SPET. Radiology 172:65–73

    Google Scholar 

  • Buck A, Wolpers G, Hutchins G, Savas V, Mangner T, Nguyen N, Schwaiger M (1991) Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 32:1950–1957

    Google Scholar 

  • Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR (1988) Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 63:628–634

    Google Scholar 

  • Buxton DB, Nienaber CA, Luxen A, Ratib O, Hansen H, Phelps ME, Schelbert HR (1989) Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1–11C]acetate and dynamic positron emission tomography. Circulation 79:134–142

    Google Scholar 

  • Chan SY, Warner-Stevenson L, Brunken RC, Krivokapich J, Phelps ME, Schelbert HR (1990) Myocardial oxygen consumption in patients with idiopathic dilated cardiomyopathy (abstract). J Nucl Med 31:773

    Google Scholar 

  • Czernin J, Porenta G, Brunken RC, Chan SY, Kuhle W, Phelps ME, Schelbert HR (1990) Oxidative and glycolytic metabolic tissue characterization in patients with acute myocardial infarction using dynamic PET (abstract). J Nucl Med 31:774

    Google Scholar 

  • Dahl J vom, Sitomer J, Schwaiger M (1991) Simultaneous assessment of flow reserve and myocardial viability with PET in patients after myocardial infarction (abstract). J Nucl Med 32:1013

    Google Scholar 

  • Delforge J, Guludec D Le, Syrota A, Crouzel C, Merlet P (1991a) In vivo quantification of myocardial muscarinic receptors in humans with PET. Circulation 84 [Suppl II]: II-423

    Google Scholar 

  • Delforge J, Syrota A, Lancon J-P, Nakajima K, Loch C, Janier M, Valloiss J-M, Cayla J, Crouzel C (1991b) Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177 and a new graphical method. J Nucl Med 32:739–748

    Google Scholar 

  • Detre K, Peduzzi P, Murphy M, Hultgren H, Thomsen J, Oberman A, Takaro T, and The Veterans Administration Cooperative Study Group for Surgery for Coronary Arterial Occlusive Disease (1981) Effect of bypass surgery on survival of patients in low- and high-risk subgroups delineated by the use of simple clinical variables. Circulation 63:1329–1338

    Google Scholar 

  • Dilsizian V, Rocco TP, Freeman NM, Leon MB, Bonow RO (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146

    Google Scholar 

  • Ducis I (1988) The high-affinity choline uptake system. In: Whittaker VP (ed) The cholinergic synapse. Springer, Berlin Heidelberg New York, pp 409–445

    Google Scholar 

  • European Coronary Surgery Study Group (1982) Long-term results of prospective randomized study of coronary artery bypass surgery in stable angina pectoris. Lancet II:1173–1180

    Google Scholar 

  • Fields JZ, Roeske WR, Morkin E, Yamasura HI (1978) Cardiac muscarinic cholinergic receptors. Biochemical identification and characterization. J Biol Chem 253:3251–3258

    Google Scholar 

  • Fowler MB, Laser JA, Hopkins AL, Minobe W, Bristow MR (1986) Assessment of the β-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74:1290–1302

    Google Scholar 

  • Fox KA, Abendschein DR, Ambos HD, Sobel BE, Bergmann SR (1985) Efflux of metabolized and nonmetabolized fatty acid from canine myocardium. Implications for quantifying myocardial metabolism tomographically. Circ Res 57:232–243

    Google Scholar 

  • Francis GS (1988) Modulation of peripheral sympathetic nerve transmission. J Am Coll Cardiol 12:250–254

    Google Scholar 

  • Francis GS, Cohn JN (1986) The autonomic nervous system in congestive heart failure. Ann Rev Med 37:235–247

    Google Scholar 

  • Freedman AP, Walsh WF, Giles RW, Choy D, Newman DC, Norton DA, Wright JS, Murray IP (1984) Early and long term results of coronary bypass grafting with severely depressed left ventricular performance. Am J Cardiol 54:749–754

    Google Scholar 

  • Gallagher BM, Folwer JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP (1978) Metabolic trap** as a principle of radiopharmaceutical design: some factors responsible for the bidistribution of [l8F[2-deoxy-2-fluoro-d-glucose. J Nucl Med 19:1154–1161

    Google Scholar 

  • Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, Phelps ME (1989) Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nuel Med 30:359–566

    Google Scholar 

  • Geltman EM, Smith JL, Beecher D, Ludbrook PA, Pogossian MM Ter, Sobel BE (1983) Altered regional myocardial metabolism in congestive cardiomyopathy detected by positron tomography. Am J Med 74:773–785

    Google Scholar 

  • Gibson RS, Watson DD, Taylor GC, Crosby IK, Wellons H, Holt N, Beller G (1983) Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1:804–815

    Google Scholar 

  • Goldstein D, Brush J Jr, Eisenhofer G, Stull R, Esler M (1988) In vivo measurement of neuronal uptake of norepinephrine in the human heart. Circulation 78:41–48

    Google Scholar 

  • Gropler RJ, Siegel BS, Lee KJ, Moerlein SM, Perry DJ, Bergmann SR, Geltman EB (1990) Nonuniformity in myocardial accumulation of fluorine-l8-fluorodeoxyglucose in normal fasted humans. J Nucl Med 31:1749–1756

    Google Scholar 

  • Gruppo Italiano per to Studio della Streptochinasi nell' Infarto Miocardico (GISSI) (1986) Effectiveness of intravenous thrombolytic therapy in acute myocardial infarction. Lancet I:397–401

    Google Scholar 

  • Henes CG, Bergmann SR, Walsh MN, Sobel BE, Geltman EM (1989) Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate. J Nucl Med 30:1489–1499

    Google Scholar 

  • Hicks RJ, Dick RJ, Molina E, Wolpers HG, Al-Aouar ZR, Schwaiger M (1990) Assessment of myocardial viability early following infarction using PET-derived C-11 acetate kinetics (abstract). Circulation 82 [Suppl III]:III-479

    Google Scholar 

  • Hicks RJ, Herman WH, Kalff V, Molina E, Wolfe E, Hutchins GD, Schwaiger M (1991) Quantitative evaluation of regional substrate metabolism in the human heart by positron emission tomography. J Am Coll Cardiol 18:101–111

    Google Scholar 

  • Huang SC, Williams BA, Barrio JR, Krivokapich J, Nissenson C, Hoffman EJ, Phelps ME (1987) Measurement of glucose and 2-deoxy-2-[l8F]fluoro-d-glucose transport and phosphorylation rates in myocardium using dual-tracer kinetic experiments. FEBS Lett 216:128–132

    Google Scholar 

  • ISIS-2 (Second International Study of Infarct Survival) Collaborative Group (1988) Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet II: 349–360

    Google Scholar 

  • Kalff V, Gallagher KP, Nguyen N, McClanahan T, Schork A, Schwaiger M (1989) Dissociation of glucose utilization and flow in canine myocardial ischemia (abstract). Circulation 80 [Suppl II]: II-638

    Google Scholar 

  • Kiat H, Berman DS, Maddahi J (1988) Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 12:1456–1463

    Google Scholar 

  • Langer S (1980) Presynaptic receptors and modulation of neurotransmission: pharmacological implications and therapeutic relevance. Trends Neurosci 3:110–112

    Google Scholar 

  • Lear J (1986) Principles of single and multiple radionuclide autoradiography. In: Phelps M, Maziotta J, Shelbert H (eds) Raven Press, New York, pp 197–235

    Google Scholar 

  • Liedtke AJ (1981) Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 23:321–336

    Google Scholar 

  • Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM, Boucher CA (1985) The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: does it represent scar or ischemia? Am Heart J 110:996–1001

    Google Scholar 

  • Marshall RC, Huang SC, Nash WW, Phelps ME (1983a) Assessment of the [18F]fluorodeoxyglucose kinetic model in calculations of myocardial glucose metabolism during ischemia. J Nucl Med 24:1060–1064

    Google Scholar 

  • Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, Schelbert HR (1983b) Identification and differentiation of resting myocardial ischemia in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 67:766–778

    Google Scholar 

  • Maziere M, Comar D, Godot J, Collard P, Cepeda C, Naquet R (1981) In vivo characterization of myocardium muscarinic receptors by positron emission tomography. Life Sci 29:2391–2397

    Google Scholar 

  • Merlet P, Delforge J, Dubois Rande JL, Benvenuti C, Crouzel C, Valette H, Fournier D, Castaigne A, Syrota A (1991) Decreased β-adrenergic receptor concentration in idiopathic cardiomyopathy assessed by positron emission tomography (abstract). Circulation 84 [Suppl II]: II-1685

    Google Scholar 

  • Mislankar SG, Gildersleeve DL, Wieland DM, Massin CC, Mulholland GK, Toorongian SA (1988) 6-[18F]Fluorometaraminol: a radiotracer for in vivo map** of adrenergic nerves of the heart. J Med Chem 31:362–366

    Google Scholar 

  • Mody-Vaghaiwalla F, Brunken R, Nienaber C, Stevenson L, Phelps M, Schelbert H (1988) Characterization of dilated and ischemic cardiomyopathy utilizing visual and circumferential profile analysis with PET (abstract). J Nucl Med 29:818

    Google Scholar 

  • Mulholland G, Schwaiger M, Sherman P, Jewett D, Otto C (1988) New positron labeled quaternized muscarinic ligand as potential PET imaging agent (abstract). Circulation 67:597

    Google Scholar 

  • Mulholland GK, Schwaiger M, Otto CA, Sherman PS, Jewett DM (1989) Synthesis and animal studies of C-11 tropapyl benzilate methiodide (MTRB). A promising ligand for muscarinic receptors (abstract) J Nucl Med 30:930

    Google Scholar 

  • Muscholl E, Ritzel H, Rossler K (1979) Presynaptic muscarinic control of neuronal adrenaline release. In: Langer S, Stark K, Dubocovich M (eds) Presynaptic receptors. Pergamon, Oxford, pp 287–291

    Google Scholar 

  • Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 36:413–459

    Google Scholar 

  • Njus D, Kelley P, Harnadek G (1986) Bioenergetics of secretory vesicles. Biochim Biophys Acta 853:237–265

    Google Scholar 

  • Ohtani H, Tamaki N, Yonekura Y (1990) Value of thallium-201 reinjection after delayed SPET imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 66:394–399

    Google Scholar 

  • Opie LH, Owen P, Lubbe W (1975) Estimated glycolytic flux in infarctiog heart. Recent Adv Stud Cardiac Struct Metab 7:249–255

    Google Scholar 

  • Passamani E, Davis KB, Gillepsie MJ, Killip T, and the principal investigators and their associates (1985) A randomized trial of coronary artery bypass surgery survival of patients with low ejection fraction. N Engl J Med 312:1665–1671

    Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 6:371–388

    Google Scholar 

  • Pierpont GL, DeMaster EG, Reynolds S, Peterson J, Cohn JN (1985) Ventricular myocardial catecholamines in primates. J Lab Clin Med 106:205–210

    Google Scholar 

  • Randall W, Ardell J (1988) Functional anatomy of the cardiac efferent innervation. In: Kulbertus HE, Franck G (eds) Neurocardiology. Futura Publishing, New York, pp 3–24

    Google Scholar 

  • Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR (1982) Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 23:577–586

    Google Scholar 

  • Ritchie JL, Albro PC, Caldwell JH, Trobaugh GB, Hamilton GW (1979) Thallium-201 myocardial imaging: a comparison of redistribution and rest images. J Nucl Med 20:477–483

    Google Scholar 

  • Rogers GA, Parsons SM, Anderson DC, Nilsson LM, Bahr BA, Korneich WD, Kaufman R, Jacobs RS, Kirtman B (1989) Synthesis, in vitro acetylcholine-storage-blocking activities, and biological properties of derivatives and analogues of trans-2-(4-phenylpiperidono)cyclohexanol (vesamicol). J Chem 32:1217–1230

    Google Scholar 

  • Rosenpire KC, Kaka MS, Van Dort M, Jewett DM, Gildersleeve DL, Schwaiger M, Wieland DM (1990) Synthesis and preliminary evaluation of [11C]metahydroxyephedrine: a false neurotransmitter agent for heart neuronal imaging. J Nucl Med 31:163–167

    Google Scholar 

  • Schelbert HR, Henze E, Schon HR, Keen R, Hansen H, Selin C, Huang S-C, Barrio JR, Phelps ME (1983a) C-11 labelled palmitic acid for the non-invasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effects of substrate availability on myocardial metabolism. Am Heart J 105:492–504

    Google Scholar 

  • Schelbert HR, Henze E, Schön H, Najafi A, Hansen H, Huang S, Barrio J, Phelps M (1983b) C-11 palmitic acid for the noninvasive evaluation of regional myocardial fatty metabolism with positron computed tomography. IV. In vivo demonstration of impaired fatty acid oxidation in acute myocardial ischemia. Am Heart J 106:736–750

    Google Scholar 

  • Schelbert HR, Henze E, Sochor H, Grossman RG, Huang SC, Barrio JR, Schwaiger M, Phelps ME (1986) Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 111:1055–1064

    Google Scholar 

  • Schon H, Shelbert HR, Najafi A, Hansen H, Robinson G, Huang S-C, Barrio JR, Phelps ME (1982) C-11 labelled palmitic acid for the non-invasive evaluation of egional myocardial fatty acid metabolism with positron computed tomography. II. Kinetics of C-11 palmitic acid in acutely ischemic myocardium. Am Heart J 103:548–561

    Google Scholar 

  • Schwaiger M (1986) Time course of metabolic findings in coronary occlusion and reperfusion and their role for assessing myocardial salvage. Eur J Nucl Med 12:S54-S58

    Google Scholar 

  • Schwaiger M, Schelbert HR, Ellison D, Hansen H, Yeatman L, Vinten Johansen J, Selin C, Barrio J, Phelps ME (1985) Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 6:336–347

    CAS  PubMed  Google Scholar 

  • Schwaiger M, Brunken R, Grover MM, Krivokapich J, Child J, Tillisch JH, Phelps ME, Schelbert HR (1986) Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 8:800–808

    Google Scholar 

  • Schwaiger M, Brunken RC, Krivokapich J, Child JS, Tillisch JH, Phelps ME, Schelbert HR (1987) Beneficial effect of residual anterograde flow on tissue viability as assessed by positron emission tomography in patients with myocardial infarction. Eur Heart J 8:981–988

    Google Scholar 

  • Schwaiger M, Hutchins G, Rosenspire K, Haka M, Wieland D (1990a) Quantitative evaluation of the sympathetic nervous system by PET in patients with cardiomyopathy (abstract). J Nucl Med 31:792

    Google Scholar 

  • Schwaiger M, Kalff V, Rosenspire K, Haka MS, Molina E, Hutchins GD, Deeb M, Wolfe E Jr, Wieland DM (1990b) The noninvasive evaluation of the sympathetic nervous system in the human heart by PET. Circulation 82:457–464

    Google Scholar 

  • Schwaiger M, Hutchins GD, Kalff V, Molina E, Rosenspire K, Haka MS, Malette S, Deeb GM, Abrams GD, Wieland DM (1991) Evidence of regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 87:1681–1690

    Google Scholar 

  • Sobel BE, Weiss E, Welch M, Siegel B, Ter-Pogossian M (1977) Detection of remote myocardial infarction in patients with positron emission transaxial tomography and intravenous C-11 palmitate. Circulation 55:853–857

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Rosiers MH Des, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    CAS  PubMed  Google Scholar 

  • Syrota A, Comar D, Paillotin G, Davy JM, Aumont M-C, Stulzaft O, Maziere B (1985) Muscarinic cholinergic receptor in the human heart evidenced under physiological conditions by positron emission tomography. Proc Natl Acad Sci USA 82:584–588

    Google Scholar 

  • Tamaki N, Yonekura Y, Yamashita K, Senda M, Saji H, Hashimoto T, Fudo T, Kambara H, Kawai C, Ban T, Konishi J (1988) Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction. Am J Cardiol 62:202–208

    Google Scholar 

  • Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, Konishi Y, Hirata K, Ban T, Konishi J (1989) Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64:860–865

    Google Scholar 

  • Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H (1983) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888

    Google Scholar 

  • Topol EJ, O'Neill WW, Langburd AB, Walton JA, Bourdillon PDV, Bates ER, Grines CL, Schork AM, Kline E, Pitt B (1987) A randomized, placebo-controlled trial of intravenous recombinant tissue-type plasminogen activator and emergency coronary angioplasty in patients with acute myocardial infarction. Circulation 75:420–428

    Google Scholar 

  • Vanoverschelde J-LJ, Melin JA, Bol A, Vanbutsele R, Cogneau M, Labar D, Robert A, Michel C, Wijns W (1992) Regional oxidative metabolism in patients recovery from reperfused anterior myocardial infarction. Relation to regional blood flow and glucose uptake. Circulation 85:9–21

    Google Scholar 

  • Waagstein F, Caidahl K, Wallentin I, Berg C-H, Hjalmarson A (1989) Long-term β-blockade in dilated cardiomyopathy: effects of short- and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 80:551–563

    Google Scholar 

  • Walsh MN, Geltman EM, Brown MA, Henes CG, Weinheimer CJ, Sobel BE, Bergmann SR (1989) Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 30:1798–1808

    Google Scholar 

  • Wieland DM, Rosenpire KC, Hutchins GD, Van Dort ME, Rothley JM, Mislankar SG, Lee HT, Gildersleeve DL, Sherman PS, Schwaiger M (1990) Neuronal map** of the heart with 6-[F-18]fluorometaraminol. J Med Chem 33:956–964

    Google Scholar 

  • Wolpers HG, Nguyen N, Buck A, Mangner TJ, Schwaiger M (1990) Relationship of C-11 acetate kinetics and hemodynamic performance in the canine heart (abstract). J Nucl Med 31:785

    Google Scholar 

  • Zimmermann H (1988) Cholinergic synaptic vesicles. In: Whittaker VP (ed) The cholinergic synapse. Springer, Berlin Heidelberg New York, pp 350–382

    Google Scholar 

  • Zipes DP, Inoue H (1988) Autonomic neural control of cardiac excitable properties. In: Kulbertus HE, Franck G (eds) Neurocardiology. Futura Publishing, New York, pp 787–796

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Institutes of Health grant R01 HL41047-02 and the American Heart Association of Michigan grant 88-0699.

Dr. Pierre Mélon is a research fellow supported by the National Foundation for Scientific Research of Belgium and in part by a grant of the Belgian Leon Fredericq Foundation.

Offprint requests to: M. Schwaiger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mélon, P., Schwaiger, M. Imaging of metabolism and autonomic innervation of the heart by positron emission tomography. Eur J Nucl Med 19, 453–464 (1992). https://doi.org/10.1007/BF00177375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177375

Key words

Navigation